top of page
NAR cover image - uncovering translation roadblocks during the development of a synthetic tRNA

Uncovering translation roadblocks during the development of a synthetic tRNA

October 14, 2022

Cain, A., Krahn, N. (2024). Overcoming challenges with biochemical studies of selenocysteine and selenoproteins. International Journal of Molecular Sciences, 25(18), 10101.

​

Weiss, J.W., Decker, J.C., Bolano, A., Krahn, N. (2024). Tuning tRNAs for improved translation. Frontiers in Genetics, 15.

​

Evans, R.M., Krahn, N., Weiss, J., Vincent, K.A., Söll, D., & Armstrong, F.A. (2024). Replacing a cysteine ligand by selenocysteine in a [NiFe]-hydrogenase unlocks hydrogen production activity and addresses the role of concerted proton-coupled electron transfer in electrocatalytic reversibility. Journal of the American Chemical Society, 146(25), 16971-16976.

​

Krahn, N., Zhang, J., Melnikov, S. V., Tharp, J. M., Villa, A., Patel, A., Howard, R. J., Gabir, H., Patel, T. R., Stetefeld, J., Puglisi, J., & Söll, D. (2024). tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Research, 52(2), 513-524.

​

Nunes, L. G. A., Cain, A., Comyns, C., Hoffmann, P. R., & Krahn, N. (2023). Deciphering the role of selenoprotein M. Antioxidants, 12(11), 1906.

​

Hoffman, K. S., Chung, C. Z., Mukai, T., Krahn, N., Jang, H. K., Balasuriya, N., O'Donoghue, P., & Söll, D. (2023). Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (New York, N.Y.), 29(9), 1400-1410.

​

Morosky, P., Comyns, C., Nunes, L. G. A., Chung, C. Z., Hoffmann, P. R., Söll, D., … Krahn, N. (2023). Dual incorporation of non-canonical amino acids enables production of post-translationally modified selenoproteins. Frontiers in Molecular Biosciences, 10, 30.

​

Chung, C. Z., & Krahn, N. (2022). The selenocysteine toolbox: A guide to studying the 21st amino acid. Archives of Biochemistry and Biophysics, 730, 109421.

​

Patel, A., Mulder, D. W., Söll, D., & Krahn, N. (2022). Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. Frontiers in Catalysis, 2, 28.

​

Meng, K., Chung, C. Z., Söll, D., & Krahn, N. (2022). Unconventional genetic code systems in archaea. Frontiers in Microbiology, 13, 1007832.

​

Chung, C. Z., Söll, D., & Krahn, N. (2022). Using selenocysteine-specific reporters to screen for efficient tRNASec variants. Methods in enzymology (Vol. 662, pp. 63–93). Academic Press.

​

Prabhakar, A., Krahn, N., Zhang, J., Vargas-Rodriguez, O., Krupkin, M., Fu, Z., … Others. (2022). Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Research, 50(18), 10201–10211.

​

Krahn, N., Söll, D., & Vargas-Rodriguez, O. (2022). Diversification of aminoacyl-tRNA synthetase activities via genomic duplication. Frontiers in Physiology, 13, 983245.

​

Chung, C. Z., Krahn, N., Crnković, A., & Söll, D. (2022). Intein-based design expands diversity of selenocysteine reporters. Journal of Molecular Biology, 434(8), 167199.

​

Chung, C. Z., Miller, C., Söll, D., & Krahn, N. (2021). Introducing selenocysteine into recombinant proteins in Escherichia coli. Current Protocols, 1(2), e54.

​

Evans, R. M., Krahn, N., Murphy, B. J., Lee, H., Armstrong, F. A., & Söll, D. (2021). Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proceedings of the National Academy of Sciences, 118(13), e2100921118.

​

Krahn, N., Tharp, J. M., Crnković, A., & Söll, D. (2020). Engineering aminoacyl-tRNA synthetases for use in synthetic biology. The Enzymes (Vol. 48, pp. 351–395). Elsevier.

​

Krahn, N., Fischer, J. T., & Söll, D. (2020). Naturally occurring tRNAs with non-canonical structures. Frontiers in Microbiology, 11, 596914.

​

Tharp, J. M., Krahn, N., Varshney, U., & Söll, D. (2020). Hijacking translation initiation for synthetic biology. ChemBioChem, 21(10), 1387–1396.

Publication list

bottom of page